Systèmes de communication

Réalisé par : Ben Salem Jamel

Décembre 2014
ANTENNES

COMMUNICATION PAR SATELLITE

I. Utilisation des satellites
 I.1. Fréquences
 I.2. Historique
 III. Caractéristique des satellites
 III.1. Orbite
 IV. Système de communication par satellite

ANTENNES

I. Définition
II. Caractéristique d'une antenne
III. Exemples des antennes
IV. Exemple de directivités
 IV.1. Diagramme de rayonnement du dipôle
 IV.2. Antenne Yagi
 IV.3. L'antenne dipôle avec réflecteur
 IV.4. L’antenne à réflecteur parabolique
V. Rayonnement d'une antenne isotrope
VI. Antenne directive
 VI.1. Gain
 VI.2. Champ créé par une antenne directive
VII. Bilan de puissance de la liaison

COMMUNICATION GSM

I. Normes
II. Infrastructure d'un réseau GSM
 II.1. Les équipements d'un réseau GSM
III. Présentation de l'infrastructure d'un réseau GPRS
 III.1. Les équipements d'un réseau GPRS
 III.2 Le mobile GPRS
III.3. Les apports du réseau GPRS
VI. Infrastructure d'un réseau UMTS
 VI.1. Les équipements d'un réseau UMTS
 VI.2. Les apports du réseau UMTS
 VI.3 Conclusion sur le réseau UMTS
CIRCUITS ET SYSTEMES DE COMMUNICATION FILAIRE USB

I. Définition .. 42
II. Schéma électrique ... 42
III. Codage et communication .. 42
IV. Le protocole de communication ... 43
V. Transfert des données .. 44

RESEAUX LOCAUX ... 45

I. Réseau WIFI .. 45
 I.1.Norme du réseau wifi ... 45
 I.1.2 Distance parcourue .. 45
II. Réseau Ethernet .. 45
 II.1.Norme d'Ethernet .. 45
 II.2.Protecote de communication ... 46
 II.3.Format des adresses ... 46

EXERCICES .. 48

EXERCICE N°1 .. 48
EXERCICE N°2 .. 48
EXERCICE N°3 .. 49
EXERCICE N°4 .. 50
EXERCICE N°5 .. 50
EXERCICE N°6 .. 52
EXERCICE N°7 .. 53

Bibliographie .. 55
Introduction

Ce cours a été conçu pour couvrir le programme du niveau L3 en licence de génie électrique et spécialement le parcours électronique industrielle. Ce support permet aux étudiants et aux enseignants de connaître les différents éléments d'un système de communication et les différents dispositifs de transmission de données comme, il aide à maîtriser et bien dimensionner un système de communication.

Ce support commence par une présentation des réseaux de communication, puis il explique les systèmes de radiocommunication ensuite, il présente les systèmes de communication filaire et sans fil.

Enfin, nous serions ravi de recevoir toute remarque constructive de la part des lecteurs à fin d'améliorer ce travail.
INTRODUCTION AUX RESEAUX

I. Définitions

Un réseau : Est un ensemble de ressources mis à la disposition d’équipements et terminaux pour leur permettre d’échanger l’information

TIC : Techniques de l’info. Ensemble des technologies utilisé pour traiter, modifier et échanger de l’information

Réseau de télécommunications: est un ensemble des moyens organisé pour fournir des services de télécom entre un certain nombre d’emplacements où des installations assurent l’accès à ces services

II. Différentes architectures d’un réseau

- Les réseaux d’entreprise et l’accès utilisent les structures en étoiles, bus ou anneaux (FH, sat, fibre, coax, cuivre)
- Le réseau dorsal utilise la structure en anneaux ou en mailles (fibre, FH)

Figure 1: Architecture d'un réseau

Figure 2 ordre d'utilisation des réseaux en télécommunication

Types de réseau

Cette classification se base sur la distance maximale du transport assuré entre les points les plus éloignés du réseau
Tableau 1: Différent Types de réseau

<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Type de réseau</th>
<th>Distance</th>
<th>Exemples</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAN</td>
<td>Réseau local "domestique": Personal Area Network</td>
<td>Jusqu'a 25 mètres</td>
<td>Infrarouge, wifi</td>
</tr>
<tr>
<td>LAN</td>
<td>Réseau local : Local Area Network</td>
<td>Jusqu'a 10 Km</td>
<td>Radio</td>
</tr>
<tr>
<td>MAN</td>
<td>Réseau métropolitain: Metropolitain Area Network</td>
<td>Jusqu'a 50 Km</td>
<td>Audio visuel</td>
</tr>
<tr>
<td>WAN</td>
<td>Réseau longue distance: Area Network</td>
<td>Jusqu'a 100 Km</td>
<td>GSM, fibre</td>
</tr>
<tr>
<td>Internet</td>
<td>Réseau mondial</td>
<td>Jusqu'a 4000 Km</td>
<td>GPS et GPRS</td>
</tr>
</tbody>
</table>

III. La téléphonie

III.1. Evolution du réseau téléphonique.

Première génération: RTC entièrement analogique transport de la voix en temps réel

Deuxième génération: Réseaux numériques utilisant toujours la commutation de circuits
Numérisation de la voix à l’entrée du réseau de l’opérateur mais la ligne reste analogique mise en place du réseau numérique ISDN (Integrated Service Digital) qui fournit deux lignes numériques simultanées à un débit de 64Kb/s aux utilisateurs finaux

Troisième génération Télémaphone sur IP: Travaille en mode paquet, les terminaux placent toutes les infos dans des paquets émis sur la ligne de l’abonné vers le cœur du réseau de paquets de l’opérateur.
Une bonne qualité de communication nécessite : Transfert des paquets « voix » en temps réel, de façon sécurisée, dans l’ordre et leur transport en 150 ms.

actuellement
Prédominante aujourd’hui, apparition du « Tout IP »
- Résoudre la problématique du transport de la voix en mode paquets pour améliorer la Qualité de service :
 - Le transfert de bout en bout entre terminaux doit être aussi réduit que possible (150 ms avec une tolérance à 200ms) avec priorisation des paquets voix et nécessite l’utilisation de protocoles applicatifs et de transport adaptés aux sessions multimédia
 - offres: Antivirus, Ligne Fax, Standard téléphonique, Internet haut débit illimité…

III.2. Principe de la téléphonie analogique
La téléphonie a été initialement prévu pour transmettre la voix humaine entre deux lieux distants l’un de l’autre. Elle utilise comme support des lignes électriques sur lesquelles transite un courant analogue aux signaux sonores.
Une liaison téléphonique élémentaire est constituée par :
- Deux dispositifs émetteur-récepteur appelés postes téléphoniques,
- Une ligne bifilaire acheminant les signaux (paire torsadée),
• Une source d’énergie électrique (E). La tension continue nécessaire à l’alimentation des postes téléphoniques est fournie par une source installée au central téléphonique (batterie centrale).

III.3. Organes constitutifs d’un poste téléphonique simple

- **Le microphone** : c’est un convertisseur d’énergie, les ondes sonores entraînent la vibration d’une membrane sensible qui provoque la création d’un signal électrique variant au même rythme que la voix.
- **L’écouteur** : il restitue sous forme acoustique l’énergie électrique reçue, en la transformant en énergie mécanique imposant un mouvement vibratoire à l’air ambiant. L’écouteur est constitué d’un haut-parleur : électro-aimant relié à une membrane.
- **Le combiné** : c’est le support ergonomique sur lequel sont montés le microphone et l’écouteur récepteur.
- **Bobine d’induction** (ou transformateur) et **Condensateur** assurent :
 - Adaptation d’impédance entre le microphone et la ligne, et entre la ligne et l’écouteur.
 - Elimination de l’effet local (antilocal), évite d’entendre sur l’écouteur les sons émis sur le microphone du même combiné.
 - Séparation des courants de natures différentes, signaux sonores et polarisation…
- **Deux diodes** : montées en antiparallèle sur le récepteur, elles absorbent les surtensions et réduisent le choc acoustique à un niveau supportable par l’oreille.
- **Un redresseur** rend l’appareil indépendant de la polarité de la ligne
- **Les organes d’appel, d’émission**
- **Les organes de réception d’appel**

Figure 4. Organes constitutifs d’un poste téléphonique
Les commutateurs
Les équipements téléphoniques sont conçus pour pouvoir mettre en relation tous les abonnés

- Soit en empruntant les lignes du réseau public RTC, ce sont des communications extérieures.
- Soit au sein d’une même entreprise, il s’agit ici de communications internes traitées par un autocommuteur privé. L’accès au réseau public se fait alors en composant un préfixe supplémentaire.

Schéma de principe simplifié du RTC
Le RTC est composé de nœuds (commutateurs) s’échangeant des informations au moyen de protocoles de communications normalisés par les instances internationales. Les systèmes réalisant le RTC sont hétérogènes, ils proviennent de fabricants différents et utilisent des technologies différentes.

IV.2 La structure en anneau
L’organisation dite en anneau, fut créée pour répondre aux attentes des industriels, en utilisant la technologie des fibres optiques, l’anneau fait circuler des données, à travers des Boîtes de Distribution Optique (B.D.O.) qui concentrent les fibres optiques. On garantit ainsi un débit et une qualité très élevés. En cas d’incident sur une des voies, les données peuvent toujours circuler en utilisant la partie intacte de l’anneau, la communication est dite « sécurisée ».
V. Communication entre le téléphone et le central
Chaque téléphone grand public est généralement connecté à un central RTC (réseau téléphonique commuté) par une simple paire de fils de cuivre d’un diamètre d’environ 0,5 mm. Ces câbles ont une impédance caractéristique de 600 W. Cette liaison avec le poste de l’abonné est dite boucle locale, lors d’une communication téléphonique, transporte une composante continue d’alimentation du poste ainsi que le signal vocal. Mais les nouveaux systèmes utilisent des câbles coaxiaux ou fibres optiques pour accéder à une bande passante accrue. Le courant de ligne et la tension de ligne sont liés et doivent respecter des valeurs conformément aux normes.

V.1. Décrochage du combiné

Figure 7 Communication entre les téléphones

V.2. Tonalité
Après la fermeture du commutateur du combiné, le central du réseau public acquitte la demande de connexion en superposant à la tension continue, un signal sinusoïdal de 440 Hz (note de musique « LA »), c’est l’invitation à numéroter la tonalité. Les autocommutateurs
privés fournissent une tonalité de fréquence égale à 330 Hz. On perçoit ce changement lors de la composition du « 0 » pour émettre un appel sortant.

Figure 8: tonalité d'un téléphone

V.3. Numérotation téléphonique

En France, la numérotation actuelle sur 10 chiffres permet d’atteindre une capacité de 300 millions de postes.

Figure 9 numérotation téléphonique

V.3.1 Numérotation décimale

Ce procédé de numérotation par impulsions est utilisé par les téléphones à cadran rotatif et par certains modems. Dans ce cas, le courant continu est interrompu un nombre de fois correspondant au chiffre envoyé, générant ainsi des impulsions à « 0 ». Une impulsion pour le chiffre 1, deux impulsions pour le chiffre 2, et ainsi de suite... jusqu’à dix impulsions pour le chiffre 0. Chaque impulsion dure 100 ms, soit 33,3 ms pour la ligne fermée et 66,7 ms pour la ligne ouverte. Pour composer le 1, il faut 100 ms ; pour faire le 2 il faut 200 ms, ainsi de suite jusqu’au 0 où il faut 1 s. Un intervalle de temps d’au moins 200 ms doit séparer 2 trains d’impulsions. Ce principe ancien est lent.

Figure 10 Numérotation décimale
V.3.2. Numérotation par fréquences vocales ou DTMF (dual tone multi frequency)

Le DTMF est un procédé de numérotation qui génère des sonorités codées, il doit émettre des fréquences spécifiques dans la gamme 300 Hz – 3400 Hz. Mais si l’on attribue une fréquence simple à chaque chiffre, un sifflement peut provoquer une erreur de numérotation ! Ce problème d’interférence est résolu simplement, par l’émission de deux fréquences simultanées par chiffre. Il est très peu probable que deux fréquences spécifiques. Ces fréquences sont normalisées au plan international (norme UIT-T-Q.23).

Sur le clavier du téléphone, en appuyant sur une touche, on émet les deux tonalités correspondant à l’intersection de l’axe horizontal et de l’axe vertical

![Diagramme de numérotation par fréquences vocales](image1.png)

Figure 11. Numérotation par fréquences vocales

Dans le cas de l’appui sur le clavier de la touche 8, le numérateur transmet le signal composite et on le relève sur le haut-parleur (voie 1), sur la voie 2 on a le signal 852 Hz

![Exemple signal du chiffre 8](image2.png)

Figure 12. Exemple signal du chiffre 8

V.3.3. Activation de la sonnerie

Après que l’abonné du poste A ait composé le numéro du correspondant (B), le RTC via les commutateurs va acheminer l’appel, puis actionne la sonnerie du poste B par l’intermédiaire du dernier central autocommutateur local. Pour activer la sonnerie, le central envoie vers le poste B est un signal sinusoidal de fréquence environ 50 Hz et de tension de 50 à 80 V efficaces par rafales, activé pendant environ 2 secondes et désactivé pendant environ 4 secondes. Ce signal est superposé à la tension continue de 48 V.
ONDES ELECTROMAGNETIQUES

I. Définition de l’onde électromagnétique :
Une onde électromagnétique (OEM) est constituée d’un champ électrique \(E \) et d’un champ magnétique \(B \) qui varient au même rythme que le courant qui leur a donné naissance. C’est le physicien Maxwell qui a étudié les rapports entre les deux champs, établissant des équations connues sous le nom d’équations de Maxwell.
On peut remarquer que :
- Toute circulation de charges dans un conducteur produit une OEM
- Une OEM créée dans tout conducteur des courants induits (antenne de réception)
 Les champs \(E \) et \(B \) produits par l’antenne se répandent dans tout l’espace environnant l’antenne, en s’atténuant. A une certaine distance de l’antenne d’émission :
 - les vecteurs \(E \) et \(B \) sont perpendiculaires entre eux
 - les vecteurs \(E \) et \(B \) sont perpendiculaires à la direction de propagation
 - \(E \) et \(B \) sont déphasés (en retard) par rapport au courant qui les a créé

![Figure 13 chaine de transmission d'une OEM](image13)

![Figure 14. Champs E et B en un point](image14)

L’onde électromagnétique se propage en ligne droite, à la vitesse de la lumière, vitesse de propagation dans le vide ou l’air est "\(c \)"
dans un matériau diélectrique de permittivité relative \(\varepsilon_r \) (isolant de câble coaxial, par exemple) la vitesse de propagation est inférieure à celle de la lumière
\[V = \frac{c}{\sqrt{\varepsilon_\text{r}}} = \frac{c}{n} \text{ avec } c = 3.10^8 \]

une onde ou radiation électromagnétique constitue la propagation de la vibration d'un champ électrique \(\vec{E} \) et d'un champ magnétique \(\vec{B} \)

- Le champ électrique (ou le champ magnétique) varie de façon sinusoïdale le long de l'axe de propagation : on a donc affaire à une onde monochromatique (une seule fréquence, une seule couleur).
- Le champ électrique (ou le champ magnétique) "vibre" dans un seul plan : on a donc affaire à une onde polarisée (verticalement, ici, pour le champ électrique).

La lumière naturelle est formée d'ondes dont les vibrations du champ électrique ont lieu dans tous les plans passant par l'axe de propagation.

![Diagram](image)

Figure 15. Propagation vers l'observateur d'une Onde lumineuse

II. Propriétés de l'onde électromagnétique :

II.1. fréquence :

La fréquence d'une OEM est la fréquence des champs \(E \) et \(B \) qui la composent c'est aussi la fréquence du courant circulant dans l'antenne.

Exemple : un signal sinusoïdal de \(f = 100 \text{ MHz} \) appliqué à une antenne d'émission produira des champs \(E \) et \(B \) variant sinusoïdalement à la fréquence de 100 MHz.
II.2. longueur d’onde :
La longueur d'onde λ est le trajet parcouru par l’onde durant une période T.

![Figure 15 définition de la longueur d’onde](image)

Figure. 15 définition de la longueur d’onde

II.3. polarisation :
La polarisation d'une OEM est la direction de son champ électrique E.
- Si E garde une direction constante, on dit que la **polarisation est rectiligne**
- Se plus souvent, E est horizontal (polarisation horizontale) ou vertical (polarisation verticale)
- À grande distance de l’antenne, E est toujours perpendiculaire à la direction de propagation
- Il existe aussi des polarisation circulaire et elliptique.

![Figure 16. Polarisation d’une onde](image)

Figure 16. Polarisation d’une onde

II.4. Propagation :
Les ondes radio se propagent de l’antenne d'émission à l’antenne de réception de diverses manières :

- **Par onde directe**, partant de l'émetteur et arrivant sur le récepteur sans rencontrer d'obstacles naturels (montagnes, couches atmosphériques) ou artificiels (immeubles, lignes à THT)
- **Par onde réfléchie**, lorsque l’onde rencontre un obstacle et est renvoyée dans sa totalité, ou en partie, dans une direction différente.
Les couches ionisées de l'atmosphère peuvent constituer des surfaces de réflexion si $f < 30$ MHz.

II.5. Spectre des onde électromagnétique :

Le tableau suivant indique les applications des ondes électromagnétiques courantes :

![Figure 17. Spectre des onde électromagnétique](image)
III. Aspect géométrique de la propagation de la lumière :

III.1. Propagation rectiligne de la lumière

La propagation rectiligne des rayons solaires explique les différents aspects, lors d'une éclipse de Soleil.

Si r est petit on parle de pinceau lumineux. Un faisceau lumineux est constitué d'un ensemble de rayons lumineux. Il est impossible, expérimentalement, d'isoler un rayon lumineux (à cause du phénomène de diffraction).

III.2. indice de réfraction :

On a vu que la célérité des ondes électromagnétiques dans le vide était :

\[c_0 = 299792458 \text{ m.s}^{-1} \approx 3,00.10^8 \text{ m.s}^{-1} \]

Dans un milieu transparent, la célérité c de la lumière est inférieure à \(c_0 \).

\[n = \frac{c_0}{c} \]

tableau 2: l'indice de réfraction de quelques substances

<table>
<thead>
<tr>
<th>Substance</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vide</td>
<td>1</td>
</tr>
<tr>
<td>Eau</td>
<td>1.33</td>
</tr>
<tr>
<td>Air</td>
<td>1.0003</td>
</tr>
<tr>
<td>Verre</td>
<td>1.5 à 1.7</td>
</tr>
</tbody>
</table>

III.3. Les lois de Descartes

On considère un rayon lumineux incident SI qui passe d'un milieu (1), d'indice de réfraction \(n_1 \), à un milieu (2), d'indice de réfraction \(n_2 \), en traversant un dioptre plan. Le plan d'incidence est défini par le rayon d'incidence SI et la normale au dioptre N'N' passant par le point d'incidence I. IR1 est le rayon réfléchi; IR2 le rayon réfracté, i1 est l'angle d'incidence, r1 l'angle de réflexion et i2 l'angle de réfraction. N'N' est la normale.
Figure 19 déviation de propagation

Le rayon incident, le rayon réfléchi et le rayon réfracté sont dans un même plan : le plan d'incidence.
- Le rayon incident et le réfléchi sont tels que : $r_1 = i_1$
- Le rayon incident et le rayon réfracté sont tels que : $n_1 \sin i_1 = n_2 \sin i_2$
Faisceau hertzien

I. Généralités

Les systèmes radio sont des supports de transmission qui utilisent la propagation des ondes radio électriques pour véhiculer les informations d'un point à un autre, on les appelle généralement faisceaux hertziens. Donc un faisceau hertzien est un système de transmission numérique ou analogique, entre deux points fixes par ondes électromagnétique de l'espace.

Les ondes utilisées par ces systèmes sont très courtes (ondes radioélectriques très fortement concentrées à l'aide d'antennes directives. Pour la communication terrestre on utilise : 1,5 à 30 GHz, il peut aussi commencer à des fréquences 400 MHz à 1000 GHz). Leur propagation est limitée à l'horizon.

Du fait de l'absence de tout support physique entre les stations, les faisceaux hertziens peuvent surmonter plus facilement des difficultés des parcours et franchir des obstacles naturels tels que : étendues d'eau, terrains montagneux, terrains fortement brisés etc. Par rapport aux systèmes sur câbles à coaxiales qui transmettent directement la bande de fréquence résultant du multiplexage, les FH nécessitent une modulation supplémentaire pour faire porter cette bande de base par les ondes radioélectriques hyperfréquences.

Le faisceau est un support de type pseudo-4 fils. Les deux sens de transmission sont portés par des fréquences différentes. Pour des raisons de distance et de visibilité, le trajet hertzien entre l'émetteur et le récepteur, amplifie et remet le signal modulé vers la station suivante.

II. Les liaisons radioélectriques

Les liaisons radioélectriques utilisent la propagation des ondes électromagnétiques dans l'air libre. Elles ont l'avantage de ne nécessite pas de lourds travaux d'infrastructure. Cependant le support utilisé est commun à tout le monde. Les bandes de fréquence représentent donc une ressource rare et leur utilisation est réglementée par des organismes officiels nationaux. Etant donné que les bandes de fréquence utilisées sont imposées, le signal à transmettre sera toujours transposé en fréquence par modulation. Une liaison peut s'établir en visibilité directe entre plusieurs stations sur des points hauts. Elle a une portée variant de 10 à 60 Km, mais la distance qui est souvent utilisée est de 50 Km.

Figure 20. Les liaisons radioélectriques
Avec

\(h \): hauteur des antennes
\(R \): rayon de la terre

\[d = 3.6 \left(\sqrt{H_e} + \sqrt{H_r} \right) \]

\(d \) = distance en Km
\(H_e \) = hauteur de l'antenne d'émission en m
\(H_r \) = hauteur de réception en m

La valeur la plus utilisée est \(d = 50 \text{Km} \)

Le bon fonctionnement des liaisons FH est conditionné par les caractéristiques des bonds radioélectriques entre les stations et par celle des antennes utilisées. Ces bonds sont en visibilité directe donc dégagées de tout obstacle et avec des réflexions, des phénomènes de réfraction et de diffraction négligeables.

On peut classer les FH en deux catégories:

1. Les FH analogiques (FHA) utilisés principalement pour:
 - La transmission des multiplex analogiques dont la capacité va de quelques voies téléphoniques à 2700 voies téléphoniques
 - La transmission des images TV, et des voies de sons qui leur sont associées et aussi d'autres signaux tels que les données.

2. Les FH numériques (FHN) qui acheminent principalement:
 - Des multiplex numériques dont les débits vont de 2 Mbits/s à 140 Mbits/s
 - Des données à grande vitesse
 - La télévision codée, etc.

Les deux types de FH sont différents par nature de signaux qu'ils transportent et par leur type de modulation.

III. Les fréquences porteuses

À l'exception de quelques systèmes fonctionnant dans les bandes 70-80 MHz (FH à bande étroites) et 400-470 MHz (FH à petite capacités).

Les faisceaux hertziens utilisent des fréquences supérieures à 1,5 GHz (ondes centimétriques). Entre 2 et 11 GHz, l'établissement des liaisons ne pose pas de problèmes majeurs (conditions de propagation, mais au delà de 11 GHz, il faut tenir compte de l'absorption par les hydrométéores.

Cette absorption croît avec la fréquence et devient très importante aux alentour de 22 GHz. Ce qui limite les fréquences porteuses à 21 GHz mais certaines bandes des fréquences
généralement comprise entre 2 et 1,5 GHz. Cette large gamme de fréquence est subdivisée en plusieurs parties appelées bande de fréquence.

Chaque bande peut être divisée en deux spots bandes espacées par un intervalle de garde.

- Le choix des sous bandes à utiliser pour l'émission de celle à utiliser pour la réception dépend de l'utilisateur.
- Les sous bandes sont à leur tour subdivisée canaux de 14 à 140 MHz de largeur (pour les FH de grande capacité) ou 7 MHz (capacité inférieure ou égale à 300 voies).
- La disposition des canaux est normalisée par le CCIR. (CCIR = Comité consultatif International des Radiocommunications)
- Chaque canal a une capacité en fonction de sa largeur, qui peut aller jusqu'à un débit de 140 Mbits/s. FHN à moyenne et forte capacité : bande 7,4 à 7,7 GHz (utilisée également par les FHA). FHN à faible débit (2 et 8 Mbits):
- Bande 2,1 à 2,3 GHz (subdivisée en six canaux espacés de 14 MHz)
- Bande des 15 GHz (2 sous bandes de : 14,4 à 14,5 GHz et 15,25 à 15,35 GHz) possible de les subdiviser en 4 canaux de 10 MHz chacune.

\[
\begin{align*}
\Delta F_1 & : \text{écart de fréquence entre 2 canaux} \\
\Delta F_2 & : \text{écart de fréquence entre 2 sous bandes} \\
\Delta F_3 & : \text{largeur de la bande FH}
\end{align*}
\]

IV. Les modulations utilisées en FH

Les équipements radio analogiques et numériques sont différent fondamentalement par le type de modulation qu'ils utilisent.

Pendant que les FHA utilisent la modulation de fréquence.

Les FHN utilisent les modulations par sauts de phase ou multi niveaux où modulation sur fréquence porteuse.
IV.1 Modulation pour faisceaux hertziens analogiques

En modulation d'amplitude, l'information utile est véhiculée par l'amplitude du signal porteur. Or en réception, les éléments traversés par le signal présentent parfois des non linéarités en amplitude, ce qui altère la qualité du signal après démodulation. La propagation de la porteuse dans l'atmosphère entraîne des variations du niveau de réception d'où après la démodulation, le signal présente des parasites. En tenant compte de ces phénomènes, le choix s'est porté sur la modulation de fréquence pour les FHA car cette modulation ne présente par les défauts ci-dessus cités et en plus les modulations et démodulations de fréquence sont de réalisations plus faciles.

IV.2. Modulation pour faisceaux hertziens numériques

Les modulations analogiques, mise au point pour adapter le signal analogique à son support de transmission ne peuvent pas être utilisé pour les signaux numériques. Il a été conçu pour ces signaux un type particulier de modulation dit modulation numériques ou modulation sur fréquence porteuse: ASK, FSK et PSK. Mais, c'est la modulation à saut de phase (PSK) ou modulation multi états qui est généralement utilisées. Aujourd'hui on trouve généralement le QPSK qui tend à être la norme pour la modulation sur fréquence porteuse. Cependant, pour mieux conserver la bande passante, la modulation QAM est aussi utilisée. En général, les FHN à moyenne et grande capacité utilisent une modulation 4 états de phase avec modulation d'une fréquence intermédiaire de 70 MHz ou de 140 MHz. Mais aujourd'hui la limite supérieure est connue seulement par le type de système de transmission.

V. Les équipements

En numérique comme en analogique, les équipements sont constitués principalement par le modulateur, l'émetteur, le récepteur et le démodulateur qui sont des équipements de traitement et de récupération du signal. Il existe également dans chaque cas des équipements de mise en forme du signal et des équipements auxiliaires qui sont différents.

V.1. Les équipements de modulation Analogique

Les modulateurs/démodulateurs utilisés en FHA sont des modems de fréquence. Malgré leur complexité et leur coût élevé, ils ont l'avantage d'être insensibles aux variations d'amplitude. Ils ont un meilleur rapport sur bruit (S/N). La fréquence intermédiaire utilisée par le modem est fixée de façon standard à 70 MHz (capacité inférieur ou égale à 1260 voies) et à 140 MHz (capacité > 1260 voies). Une FI standard permet l'utilisation des modems identiques tout le long de la liaison : maintenance et acquisition des pièces de rechange plus facilités.

Figure 22. Schéma d'une liaison hertzienne analogique
Les équipements sont conçus pour respecter les objets de qualité du CCIR les bands ont eu en moyenne une longueur de 50 Km

M: modulation
E: émetteur
R: récepteur
D: démodulation

V.1.1. Le modulateur

Il existe deux types:

- Le modulateur à modulation directe : ici le signal bande de base est modulée directement sur la fréquence FI.

- Le modulateur à transposition de fréquence : ici la modulation est faite en deux étapes pour aboutir à la FI modulée. On utilise alors deux porteuses.
Le bloc modulateur, comporte des cellules de préaccentuation du signal bande de base avant la modulation et un amplificateur du signal bande de base.

V.1.2. Le démodulateur

Son rôle est de transformer le signal modulé en fréquence qu'est la FI en un signal identique à celui qui a été modulé en fréquence à l'origine : le signal bande de vaste. Cette conversion doit être linéaire, elle doit donc être insensible aux variations d'amplitude.

![Synoptique de principe du démodulateur](image)

Figure 25 Synoptique de principe du démodulateur

V.1.3. Le limiteur

La modulation de fréquence est une modulation à enveloppe constante, et en plus, le discriminateur a une réponse en variation d'amplitude, d'où la nécessité pour un démodulateur FM quel qu'il soit, d'être toujours muni à l'entrée, d'un limiteur. Celui-ci est un circuit écrêteur dont le rôle est d'éliminer les variations parasites de l'amplitude du signal.

V.1.4. Le discriminateur

Le discriminateur prend le signal d'amplitude constante et de fréquence variable du limiteur et le convertit en un signal d'amplitude et de fréquence variable. Cette variation représente le signal bande de base original émis obtenu après passage dans un détecteur qui est un circuit en amplitude.

V.2. Les équipements de modulation Analogique Numérique

Les modems utilisés en FHN sont des modulateurs démodulateurs à saut de phase (PSK).

V.2.1. Le modulateur

![Modulateur d'un FHN](image)

Figure 26 modulateur d'un FHN

Exemple de modulateur 2-PSK : C'est un modulateur en anneau qui réalise l'inversion de phase.
V.2.2. Le démodulateur

En numérique, la démodulation a pour rôle de déterminer la phase du signal modulé ou la différence de phase entre deux instants consécutifs. Après cette restitution, on procède à une régénération qui permet de retourner la valeur exacte de la phase (ou différence de phase) émise, et à un décodage dont le but est de restituer les n éléments binaires qui ont été mis à partir de la valeur de la phase ou de la différence de phase donnée par le régénérateur.

V.2.3. Les émetteurs récepteurs Analogique

Les émetteurs récepteurs utilisés en analogiques sont hétérodynes, c'est-à-dire que la modulation qui permet de transporter la bande de base dans la gamme des fréquences radioélectriques se fait en deux temps. On passe par une fréquence intermédiaire (FI).

L'amplification directe à la fréquence de fonctionnement est difficile à réaliser. D'où la préférence va aux émetteurs ou récepteurs à transposition en fréquence qui ont une même structure en terminale et en relais.
V.2.3.1. L'émetteur

Figure 29 schéma synoptique d'un émetteur

L'émetteur comprendra donc :

- Un amplificateur du mélangeur émission AME
- Un mélangeur émission ME
- Un oscillateur local émission
- Un amplificateur hyperfréquences
- Des filtres en hyperfréquences

V.2.3.2. Le récepteur

Figure 30 schéma synoptique d'un récepteur

MR : mélangeur réception
OLR : Oscillateur local réception
PAFI : préamplificateur FI
AFI : Ampli FI
CTPG : Correction de temps de propagation
CAG : Contrôle automatique du gain.

La plupart des équipements FHN à faible et moyen débit utilise une modulation directe en émission, mais en réception, le processus de démodulation passe toujours pour fréquence intermédiaire. Le principe de fonctionnement de ces émetteurs et récepteurs est le même qu'en analogique.
VI. Liaison des émetteurs/récepteurs avec les antennes

Les E/R sont reliés aux antennes par des lignes de transmission et des éléments de branchement, qui permettent de regrouper tous les E/R sur un ou deux antennes selon le plan de fréquence choisi. Comme lignes de branchement, on a les guides d'onde ou des câbles coaxiaux, et comme éléments de branchement couramment utilisés, on peut citer les filtres d'aiguillage, les calculateurs, les coupleurs directifs, etc.

VI.1. Les antennes

Les antennes sont des dispositifs de couplage entre une ligne de transmission et l'espace environnant servant de support de transmission. Elles peuvent être classées en deux grandes familles : les fils rayonnants et les surfaces rayonnantes. Dans le domaine des FH de fréquence supérieure à 1 GHz on utilise comme antennes des surfaces rayonnantes. Il est possible de jouer sur le plan de fréquence proprement dit, mais aussi sur l'utilisation des polarisations V (verticale) ou H (horizontale) en utilisant les découplages d'antenne pour augmenter la capacité des liaisons. Si on utilise une seule fréquence pour la transmission, il y aura des brouillages comme le schéma ci-dessous.

![Figure 31 representation de brouillage](image)

Brouillage 1 : Le niveau fort F1 perturbe la réception du niveau F2 (filtrage insuffisant)
Brouillage 2 : Le niveau fort F1 perturbe la réception du niveau faible F1 (lobe arrière de l'antenne)
Brouillage 3 : Le niveau faible F1 perturbe la réception du niveau faible F1 (résistance aux brouillages co-canal)

Pour réduire les brouillages, les fréquences des émissions et des réceptions de ces antennes d'un relais à un autre et les croisements des polarisations dans chaque cas.

![Figure 32. Croisements des polarisations](image)
On peut aussi employer des antennes très directives et ayant des lobes latéraux suffisamment bas où utilisation de 2 canaux différents pour la séparation des demi-bandes émission/réception : pour une antenne unique, 2 guides d’onde et un duplexer.

- Chaque station d’une part regroupe tous les canaux servant à l’émission et d’autre part ceux servant à la réception
- Ces 2 groupes doit être éloignés pour qu’ils puissent être séparé par filtrage.
- Il faut une antenne et deux guides d’ondes par station.

Parfois on alterne des polarisations verticales et horizontales dans chaque groupe, cette liaison doit avoir 2 antennes et 4 guides d’onde par station et par direction (chaque guide d’onde n’achemine qu’un seul sens de transmission).

Figure 33. éloignement des canaux

Figure 34 alternance des polarisations dans chaque groupe
communication par satellite

I. Utilisation des satellites
- VSAT (Very Small Aperture Terminal): diffusion (TV, internet) chez l’abonné
- téléphone mobile:
 - services multimédia:
 - GPS

I.1. Fréquences
- Les bandes passantes des répondeurs sont en général de l’ordre de 40MHz (dans les
 gammes les plus hautes)
- Un satellite a en général plusieurs répondeurs

II. Historique
1957 : premier satellite.
1962 : premier satellite de télécommunication (Telstar1 d’ATT).
1965 : premier satellite géostationnaire (Early-Bird Intelsat1) (240 circuits).
1969 : Intelsat couvre le globe avec 4 satellites géostationnaires.
1977 : Création d’EUTELSAT.....

III. Caractéristiques des satellites
✓ PIRE (Puissance Isotrope Rayonnée Équivalente) aussi appelée EIRP (Equivalent Isotropic Radiated Power) est la puissance qu’il faudrait fournir à une antenne omnidirectionnelle de référence pour obtenir le même champ électromagnétique. La PIRE est le produit de la puissance fournie par le gain de l’antenne (directionnelle).

Un satellite géostationnaire de météorologie ou de télédiffusion pointe son antenne parabolique vers le sol et émet une puissance Po avec une puissance Po gain G1 la densité de puissance P au niveau du sol est de :

\[P = \frac{G_1 P_0}{4\pi d^2}, \quad \text{pire} = G_1 P_0 \]

✓ Orbite : trajectoire courbe d’un corps céleste naturel ou artificiel ayant pour foyer un autre corps céleste.
✓ Apogée : le point le plus haut du satellite auquel sa vitesse est la plus lente.
✓ Périgée : Le point le plus bas du satellite auquel sa vitesse est la plus rapide.
✓ L’inclinaison : c’est l’angle formé entre le plan orbital et le plan équatorial. Plus l’angle est important, plus la surface couverte par le satellite est grande

III.1. Orbite
Géostationnaire est l’orbite particulière sur laquelle la vitesse angulaire du satellite est égale à celle de la rotation de la terre. L’orbite géostationnaire est située dans le plan de l’équateur à une altitude moyenne de 35800km
Ces satellites peuvent alors couvrir un tiers de la surface de la terre (sauf les pôles).

Les orbites moyennes (MEO) entre 10 000 et 15 000 km. Elles sont à défilement, cependant le satellite reste visible au-dessus d'un point pendant quelques heures. Leurs utilisations sont du même ordre que pour les satellites en orbite basse (LEO)
L’orbite héliosynchrone, fortement elliptique dans un plan quasi polaire, présente le satellite à la verticale d'un point, tous les jours à la même heure et sur la face éclairée de la Terre. Même applications, altitudes vers 800 km.
Les satellites à orbite géostationnaire constituent de loin les satellites les plus employés actuellement. Placés au-dessus de l’équateur à 35 786 km d’altitude, ces satellites géostationnaires effectuent leur révolution en 23 heures 56 minutes et 4 secondes, durée qui correspond à la période de rotation de la Terre. Se déplaçant dans le même sens et à la même vitesse angulaire que le globe, ils apparaissent ainsi immobiles depuis le sol et peuvent couvrir instantanément une large calotte équivalant environ à un hémisphère.

Figure 35 représentation des orbites

IV. Système de communication par satellite

HUB : Station maîtresse, gère plusieurs groupe de réseaux (plusieurs entreprises),

Station : Micro-stations dépendantes,

TDM : *Time Division Multiplex* Trame de la station maîtresse diffusée vers les micro-stations.

TDMA : *TDM Acces channel* Multiplexage des émissions des stations vers la station maîtresse
Figure 36 Système de communication par satellite
I. Définition
L'antenne est un dispositif permettant de rayonner ou de capter à distance les ondes électromagnétiques dans un appareil ou une station d'émission ou de réception.

L'antenne est un conducteur électrique plus ou moins complexe généralement placé dans un endroit dégagé. L'antenne est un dipôle électrique qui se comporte comme un circuit résonant. La fréquence de résonance de l'antenne dépend d'abord de ses dimensions mais aussi des éléments qui lui sont ajoutés.

II. Caractéristique d'une antenne

Elle se définit par les caractères suivants :
- Bande de fréquences d'utilisation
- Polarisation
- Directivité, gain avant et diagramme de rayonnement
- Dimensions et forme
- Type d'antenne
- Mode d'alimentation et impédance au point d'alimentation
- Puissance admissible en émission
- Résistance mécanique

La polarisation d'une antenne est celle du champ électrique E de l'onde qu'elle émet. Un dipôle demi-onde horizontal a donc une polarisation horizontale ou verticale.
Il existe des dizaines de types d'antennes, différents par leur fonctionnement, leur géométrie, leur technologie...

III. Exemples des antennes

Quelques exemples :
- Antenne en parapluie ou en nappe pour ondes kilométriques.
- Antenne boucle de différentes formes (carré, triangle, losange...).
- Antenne doublet filaire pour ondes décamétriques.
- Antenne yagi à éléments parasites, très directive et à gain important.
- Antenne quart d'onde verticale omnidirectionnelle pour très hautes fréquences (THF ou VHF).
- Antenne rideau ou colinéaire à la directivité très marquée.
- Antenne cadre magnétique, de dimensions réduites.
- Antenne diélectrique ou à ondes de surface.
- Antenne hélice pour ondes décimétriques, à polarisation circulaire.
- Antenne parabolique pour ondes centimétriques (hyperfréquences).
- Antenne à fente sur ondes millimétriques.
Antenne Cassegrain

IV. Exemple de directivités
IV.1. Diagramme de rayonnement du dipôle
L’antenne dipôle est très utilisée en radiodiffusion car c’est une antenne simple à réaliser et peu encombrante elle rayonne de manière omnidirectionnelle dans un plan horizontal elle rayonne peu d’énergie dans la direction de son axe son diagramme de directivité est bien adapté à la couverture d’un territoire
Figure 38 antenne dipôle

Figure 39 rayonnement de l'antenne dipôle dans le plan horizontal et en vertical

IV.2. Antenne Yagi

Figure 40 Antenne yagi et diagramme de rayonnement dans le plan horizontal

IV.3. L’antenne dipôle avec réflecteur
Pour rendre un dipôle directif, on peut aussi l’associer à une surface réfléchissante plane ou parabolique. La forme du réflecteur joue sur la directivité du dipôle, sa position joue sur l’impédance du dipôle. L’impédance est en général de 50 ohms et le gain varie entre 10 et 30 dBi, ce type d’antenne a des dimensions acceptables au-dessus de 1 GHz.

![Figure 41 L’antenne dipôle avec réflecteur](image)

IV.4. L’antenne à réflecteur parabolique

La directivité et le gain du cornet peuvent encore être améliorés en l’associant à un réflecteur parabolique. L’antenne qui en résulte, appelée ordinairement parabole, est une des meilleures antennes directives et donc très utilisée au de là de 1 GHz l’onde se réfléchit sur la parabole et se concentre au foyer, l’embouchure du guide d’onde est placée au voisinage du foyer le diamètre du réflecteur parabolique est D

![Figure 42 L’antenne à réflecteur parabolique](image)
Le gain de l’antenne augmente avec son diamètre \(G = 6,1 \left(\frac{D}{\lambda} \right)^2 \)

l’angle d’ouverture diminue si le gain augmente: \(\theta = 70 \frac{\lambda}{D} \)

V. Rayonnement d’une antenne isotrope

L’antenne qui rayonne la puissance \(P_0 \) de l’émetteur uniformément dans toutes les directions s’appelle antenne isotrope. On ne sait pas réaliser une telle antenne en pratique, mais elle est commode pour servir d’étalon pour tester les antennes réelles.

la surface \(S \) de la sphère de rayon \(d \) s’écrit \(S = 4\pi d^2 \)

la puissance émise \(P_0 \) répartissant sur cette sphère, une surface \(S \) reçoit une densité de puissance \(P : P = \frac{P_0}{S} \) en w/m²

La densité de puissance en un point est reliée au module du champ électrique \(E \) par \(P = \frac{E^2}{120\pi} \)

Le champ \(E \) au niveau du récepteur : \(E = \sqrt{120\pi P} = \sqrt{\frac{30P_0}{d}}, \) en v/m

![Figure 43. Rayonnement d’une antenne isotrope](image)

VI. antenne directive

VI.1. Gain

Une antenne est un composant passif, elle ne peut donc pas amplifier le signal. Mais par une disposition particulière des brins rayonnants, elle peut concentrer la puissance \(P_0 \) émise dans une direction privilégiée : une antenne directive a un gain \(G \) positif par rapport à une antenne isotrope dans la direction privilégiée ce gain \(G \) est mesuré par rapport à l’antenne isotrope et est exprimé en dBi la directivité est caractérisée par l’angle d’ouverture à \(-3\)dB0
VI.2. Champ créé par une antenne directive

Lorsqu’on établit une liaison radio entre deux points éloignés d’une distance d, on peut évaluer l’intensité du champ électrique E au niveau de l’antenne de réception.

Comme l’antenne d’émission a un gain G1 dans la direction utile, la densité de puissance devient :

\[P = \frac{G_1 P_0}{S} = \frac{G_1 P_0}{4\pi d^2} \]

Le champ électrique E au niveau du récepteur devient donc :

\[E = \sqrt{120\pi P} = \sqrt{\frac{30G_1 P_0}{d}} \]

VII. Bilan de puissance de la liaison

La puissance Pr du signal capté par l’antenne et envoyée à l’entrée du récepteur se calcule grâce à la formule de Friis:

La densité de puissance au niveau de l’antenne de réception s’écrit :

\[P = \frac{G_1 P_0}{4\pi d^2} \]

L’antenne de réception caractérisée par sa surface effective A2 reçoit une puissance :

\[P_r = A_2 P, avec \ A_2 = G_2 \frac{\lambda^2}{4\pi} \]
La puissance reçue P_r vaut donc :

$$P_r = G_1 G_2 P_0 \left(\frac{\lambda}{4\pi d} \right)^2$$

en W c’est la formule de Friis si on exprime la puissance en dBm et les gains en dBi, la formule de Friis devient , après simplification

$$P_r = G_1 + G_2 - 20 \log(f) - 20 \log(d) + 147.5\), en dBm

La tension du signal reçu est $V_r = \sqrt{P_r R}$, en (v)

Exemple

Le satellite géostationnaire Météosat situé à $d = 36000$ km d’altitude au-dessus du golfe de Guinée émet vers l’Europe des images de la couverture nuageuse :

le satellite émet une puissance $P = 6 W = 37.8$ dBm, il est équipé d’une antenne de gain $G_1 = 11$ dBi = 12.6 , la parabole de réception a un gain $G_2 = 25$ dBi, la fréquence d’émission est $f = 1691$ MHz (canal 1)

1-Calculer la densité de puissance
2-Calculer l'amplitude du champ E
3-Calculer la puissance P_r captée par le récepteur
4-Calculer la tension du signal reçu

Solution

1-La densité de puissance P au niveau du sol est de

$$P = \frac{G_1 P_0}{4\pi d^2} = \frac{12.6 * 6}{4\pi (36.10^6)^2} = 4.65.10^{-15} W$$

2- Champ électrique E à l’antenne de réception vaut

$$E = \sqrt{120 \pi P} = 1.3 \mu V / m$$

3-La puissance P_r captée par la parabole de réception s’écrit

$$P_r = 37.8 + 11 + 25 - 184.6 - 151.6 + 147.5 = -114.9 dBm$$

4-la tension V_r correspondante sur 50 ohms vaut alors : $V_r = \sqrt{P_r R} = \sqrt{3.6.10^{-15} . 50} = 0.43 \mu V$
Câblage de l'installation :

Figure 46 association des antennes
COMMUNICATION GSM

I. Normes

Norme GSM prévoit que la téléphonie mobile par GSM occupe deux bandes de fréquences aux alentours des 900 [MHz] :
1. la bande de fréquence 890 - 915 [MHz] pour les communications montantes (du mobile vers la station de base) et
2. la bande de fréquence 935-960 [MHz] pour les communications descendantes (de la station de base vers le mobile).
Chaque canal fréquentiel utilisé pour une communication a une largeur de bande de 200 [kHz].

II. Infrastructure d'un réseau GSM

Le réseau GSM a pour premier rôle de permettre des communications entre abonnes mobiles (GSM) et abonnes du réseau téléphonique commute (RTC – réseau fixe).
Le réseau GSM s'interface avec le réseau RTC et comprend des commutateurs.
Le réseau GSM se distingue par un accès spécifique : la liaison radio.
Le réseau GSM est composé de trois sous ensembles :
- Le sous système radio (BSS) Base Station Sub-system assure et gère les transmissions radios
- Le sous système d'acheminement (NSS) Network Sub System (on parle aussi de SMSS Switching and Management Sub-System pour parler du sous système d'acheminement)
 Le NSS comprend l'ensemble des fonctions nécessaires pour appels et gestion de la mobilité.
- Le sous-système d'exploitation et de maintenance (OSS) Operation Sub-System) qui permet à l'opérateur d'exploiter son réseau.

Figure 47 Infrastructure d'un réseau GSM
II.1. Les équipements d'un réseau GSM

- BTS : Base Transceiver Station (Station de base) assure la réception les appels entrant et sortant des équipements mobiles.
- BSC : Base Station Controller (Contrôleur station de base) assure le contrôle des stations de bases.
- MSC : Mobile Switching Centre (Centre de commutation de mobile) assure la commutation dans le réseau
- HLR : Home Location Register (Enregistrement de localisation normale). Base de données assurant le stockage des informations sur l'identité et la localisation des abonnées.
- AUC : Authentication Center (centre d'authentification). Assure l'authentification des terminaux du réseau
- VLR Visitor Location Register (Enregistrement de localisation pour visiteur). Base de données assurant le stockage des informations sur l'identité et la localisation des visiteurs du réseau.

Figure 48 Les équipements d'un réseau GSM.

Conclusions sur le réseau GSM
La couverture du réseau est assurée par la multiplication des ensembles BTS – BSC. Nous verrons par la suite que le réseau GSM est une base pour la mise en place des réseaux GPRS et UMTS. Rappelons ici rapidement qu'une BTS couvre environ 500m de zone en ville et 10 km de zone en campagne. Cela donne un aperçu du coût et du temps nécessaires pour la mise en place.

III. Présentation de l'infrastructure d'un réseau GPRS

Un réseau GPRS est en premier lieu un réseau IP. Le réseau est donc constitué de routeurs IP. L'introduction de la mobilité nécessite par ailleurs la précision de deux nouvelles entités :
- Le nœud de service le SGSN.
- Le nœud de passerelle le GGSN.

Une troisième entité le BG joue un rôle supplémentaire de sécurité. Le réseau GPRS vient ajouter un certain nombre de « modules » sur le réseau GSM sans changer le réseau existant. Ainsi sont conservés l'ensemble des modules de l'architecture GSM, nous verrons par ailleurs que certains modules GSM seront utilisés pour le fonctionnement du réseau GPRS.

III.1. Les équipements d'un réseau GPRS

Le nœud de service (SGSN) (Serving GPRS Support Node) est relié au BSS du réseau GSM. Le SGSN est en connexion avec l'ensemble des éléments qui assurent et gèrent les transmissions radio.

Le nœud de passerelle GPRS (Gateway GPRS Support Node) est relié à un ou plusieurs réseaux de données (Internet, autre réseau GPRS. Le GGSN est un routeur qui permet de gérer les transmissions de paquets de données :
- Paquets entrants d'un réseau externe, achemines vers le SGSN du destinataire.
- Paquets sortants vers un réseau externe, émanant d'un destinataire interne au réseau.

Le module BG pour la sécurité. Les recommandations introduisent le concept de BG (Border Gateway) qui permettent de connecter les réseaux GPRS via un réseau fédérateur et qui assurent les fonctions de sécurité pour la connexion entre ces réseaux.

Le routeur IP L'opérateur peut prendre le parti de gérer et d'administrer ses propres routeurs IP afin d'ouvrir le réseau GPRS vers les réseaux de données externes.
- Sur les antennes les BTS est ajouté un module CCU (Channel Codec Unit). Cette entité permet de gérer les envois d'informations vers le module SGSN.
- La norme GPRS introduit également un équipement appelé PCU (Packet Control Unit) généralement située sur les BTS (comme sur le schémas ci dessus), les BSC ou le SGSN. Le PCU a pour fonction de gérer l'échéancier de transmission et l'acquittement des blocs sur les canaux de données.
III.2 Le mobile GPRS

L’usage attendu par le réseau GPRS est la possibilité de consulter de manière interactive des serveurs. Cela nécessite donc un débit plus important sur la voie descendante que sur la voie montante. On parle de mobile multi slot : le terminal doit être en mesure de recevoir ou de transmettre des informations sur plusieurs intervalles de temps.

- La carte SIM
La carte SIM utilisée pour l’accès au réseau GPRS est une carte SIM similaire à celle requise pour accéder au réseau GSM classique. Quelques fichiers sont simplement ajoutés lors de la phase de personnalisation chez le fabricant de cartes.

- Les équipements GSM utilisés par le réseau GPRS
Le réseau GPRS appuie son architecture sur les éléments du réseau GSM.
- Les BTS et BSC permettent de couvrir un territoire national pour localiser les terminaux.
- Le MSC et le VLR permettent également de gérer les problématiques d’itinérance des abonnés sur les réseaux GSM et GPRS.
- Le SMSC et le GMSC permettent la communication interne au réseau par l’envoi de messages courts à destination du terminal GPRS.
- Le HLR permet de gérer les problématiques liées à la localisation des individus (en mode GPRS, fournir une carte de la ville où se trouve l’abonné).
- L’EIR permet de gérer les problématiques liées au terminal visé (est-il compatible avec les données que le réseau souhaite lui faire parvenir ?)

Le réseau GPRS est totalement dépendant du bon fonctionnement des infrastructures du réseau GSM. Le réseau GSM constitue donc en effet une base pour la mise en place du réseau GPRS. L’ensemble des éléments GSM et GPRS est associé pour fournir un service GPRS. Deux protocoles sont alors utilisés :
- Le traditionnel protocole IP qui assure une ouverture vers les terminaux fixes extérieurs au réseau (Voir cours sur Normes et protocoles).
- Le protocole SS7 qui est un protocole interne au réseau GPRS.
III.3. Les apports du réseau GPRS

Le GPRS peut finalement être vu comme un réseau de données à part entière qui dispose d'un accès radio tout en réutilisant une partie du réseau GSM.

Les débits prévus permettent d'envisager des applications comme la consultation de sites Internet. Dans la première version du GPRS seul un service de transmission de point à point (PTP – Point To Point) sera proposé. Une information envoyée par un terminal vers un terminal.
Les services points à multi-points (PTM – Point To Multipoint) une information envoyée d'un agrégateur de contenu vers 10 000 terminaux seront ensuite proposés à des communautés ou des zones géographiques. On parle de PTP Broadcast. GPRS offre enfin un service de messageries entre les terminaux

Conclusion sur les réseaux GPRS

Le service GPRS permet de considérer le réseau GSM comme un réseau à transmission de données par paquets avec un accès radio et des terminaux mobiles. Des routeurs spécialisés SSGN et GGSN sont introduits sur le réseau. La transmission par paquet sur la voie radio permet d'économiser la ressource radio : un terminal est susceptible de recevoir ou d'émettre des données à tout moment sans qu'un canal radio soit monopolisé en permanence comme c'est le cas en réseau GSM.
Le débit maximal instantané annonce pour le GPRS est de 171.2 Kbit/s même s'il est limite à 48 Kbit/s en mode descendant. (Limite actuelle des terminaux GPRS).
Le mise en place d'un réseau GPRS permet à un opérateur de proposer de nouveaux services de type Data avec un débit de données 5 à 10 fois supérieur au débit maximum théorique d'un réseau GSM. (Rappel débit max. en GSM : 9.6 Kbit/s).

VI. Infrastructure d'un réseau UMTS

Figure 50 Infrastructure d'un réseau UMTS
Le réseau UMTS vient se combiner aux réseaux déjà existants. GSM et GPRS apportent des fonctionnalités respectives de Voix et de Données, le réseau UMTS apporte ensuite les fonctionnalités Multimédia.

VI.1. Les équipements d'un réseau UMTS
a mise en place du réseau UMTS implique la mise en place de nouveaux éléments sur le réseau

Le Node B est une antenne. Reparties géographiquement sur l'ensemble du territoire, les Nodes B sont au réseau UMTS ce que les BTS sont au réseau GSM. Ils gèrent la couche physique de l'interface radio. Il régit le codage du canal, l'adaptation du débit et l'étalement.
Le RNC est un contrôleur de Node B. Le RNC est encore ici l'équivalent du BCS dans le réseau GSM.
Le RNC contrôle et gère les ressources radio en utilisant le protocole RRC (Radio Ressource Control) pour définir procédures et communication entre mobiles (par l'intermédiaire des Node B) et le réseau.
Le RNC s'interface avec le réseau pour les transmissions en mode paquet et en mode circuit. Le RNC est directement relié à un Node B, il gère alors :
- Le contrôle de charge et de congestion des différents Node B.
- Le contrôle d'admission et d'allocation des codes pour les nouveaux liens radio (entrée d'un mobile dans la zone de cellules gérées ...).
La carte USIM assure la sécurité du terminal et la confidentialité des communications. Des algorithmes de cryptage à des publikes sont utilisées. Un certain nombre de possibilités sont prévues pour les cartes USIM de troisième génération. Par exemple, la détection des fausses stations de base, l'utilisation des clés de cryptage plus longues ou encore la protection des données d'identité de l'abonné et de son terminal.
La carte USIM est l'équivalent en 3G de la carte SIM en 2G. les fabricants de cartes travaillent aujourd'hui sur une carte bi mode GSM / UMTS permettant un accès aux deux réseaux par activation / désactivation des modes 2G ou 3G.

VI.2. Les apports du réseau UMTS
Le réseau UMTS permettra à l'opérateur de proposer à ses abonnés des services innovants. Le GSM répond aux attentes en terme de communication de type Voix et le réseau GPRS répondra aux attentes en terme d'échange de Data en complément du réseau GSM. L'avènement des réseaux UMTS sera l'ère du multimédia portable.

VI.3 Conclusion sur le réseau UMTS
Le réseau UMTS est complémentaire aux réseaux GSM et GPRS. Le réseau GSM couvre les fonctionnalités nécessaires aux services de type Voix en un mode circuit, le réseau GPRS apporte les premières fonctionnalités à la mise en place de services de type Données en mode paquets, et l'UMTS vient compléter ces deux réseaux.
Circuits et systèmes de communication filaires USB

I. Définition
Le port USB a vu le jour en 1990 dans le but de remplacer tous les anciens ports qui commençaient à s'essouffler. Ainsi, il a connu trois versions depuis sa création : la 1.1, la 2.0 et la 3.0.

La version 1.1 permet deux modes de fonctionnement : low speed à 192 Ko/s pour les claviers et souris, et full speed à 1,5 Mo/s pour les imprimantes, scanners, etc.

La version 2.0 ajoute un nouveau mode : high speed, à 60 Mo/s. Il est utilisé par les disques durs externes, les clés USB de stockage, et par les nouveaux scanners et nouvelles imprimantes. Mais ce n'est pas tout : l'USB 2.0 ajoute une alimentation en 5 Volts et jusqu'à 500 mA. En 2008.

La version 3.0 de l'USB a vu le jour et apporte un débit de transfert de 625 Mo/s soit 5000 Mbits/s. Ce mode est alors nommé Superspeed.

II. Schéma électrique

Nous allons déjà voir le cas de l'USB 1.1 et 2.0 de plus près.

Alors, en 1 nous avons la borne +5V.

En 2, D-, qui permet de transférer les données.

En 3, D+, qui permet également de transférer les données.

En 4, Ground, c'est-à-dire le 0V.

pour le port USB est de type A.

Il existe aussi le type B :
Il existe encore les ports USB de type mini A et mini B. On les trouve le plus souvent pour connecter les appareils photos, certaines clés audio USB, etc.

III. Codage et communication
Le port USB utilise un type d'encodage (NRZI) qui nécessite deux broches. C'est-à-dire que cet encodage utilise la borne D- pour représenter un 0 binaire, avec une tension négative.
et la borne D+ pour le 1 binaire, avec une tension positive. NRZI signifie (Non Return to Zero Inverted) : jamais de retour à zéro, inversé. C'est un codage bien spécial :

- s'il faut envoyer un "1", la sortie ne change pas d'état ;
- s'il faut envoyer un 0", la sortie change d'état à chaque fois.

Au bout de six "1" consécutifs, on envoie un "0". Mais cette norme n'est utilisée que pour l'USB.

Maintenant, passons à l'USB 3.0 : il est plus complexe puisqu'il comporte neuf fils. En apparence, il reste similaire à l'USB 2.0, ce qui lui permet entre autres d'assurer une compatibilité descendante et ascendant : on peut brancher des vieux périphériques sur du nouveau matériel et des périphériques neufs sur du vieux matériel. Mais, s'il conserve les quatre broches classiques de l'USB, cinq viennent s'ajouter permettant ainsi au mode Superspeed d'atteindre un très haut débit : 600 Mo/s tout de même !

Voici les vues de dessus et de profil du connecteur (en coupe) :

![Figure 52 USB 3.0](image)

Les broches 1, 2, 3 et 4 ont toujours les mêmes fonctions. En 5 et 6, nous avons les contacts qui sont dédiés à la réception (pour l'ordinateur) en mode Superspeed. En 8 et 9, ce sont les contacts qui servent à l'émission (pour l'ordinateur) en mode Superspeed. Le contact 7 est quant à lui dédié au retour des signaux GND

IV. Le protocole de communication

Tout d'abord, lorsque l'on branche un périphérique USB, l'ordinateur le détecte grâce à une tension, constante entre D- et D+ lorsque rien est branché, et qui chute dès que l'on branche quelque chose. Ainsi, dès que le périphérique est connecté, l'ordinateur envoie un courant d'initialisation pendant 10 millisecondes. Dès lors, il lui attribue l'adresse "0". Après, le PC questionne tous les périphériques USB déjà connectés pour connaître leur adresse, puis en attribue une non utilisée (codée sur 7 bits) au nouveau périphérique, ce qui laisse 127 possibilités.
V. Transfert des données
Les principes de l'USB, pour communiquer avec les périphériques, c'est que chacun a la parole à son tour, personne ne parle en même temps, et l'ordinateur indique au préalable qui doit parler.

Ainsi, le PC envoie ce qui s'appelle un jeton, qui contient l'adresse du périphérique qui doit parler. Ce jeton circule de périphérique en périphérique, jusqu'à ce que le périphérique se reconnaîsse et écrive à l'intérieur. Le PC finit par recevoir le jeton et le décode.
Réseaux locaux

I. Réseau WIFI

I.1. Norme du réseau wifi

Le WI-FI répond à la norme IEEE 802.11. La norme IEEE 802.11 (ISO/IEC 8802-11) est un standard international décrivant les caractéristiques d'un réseau local sans fil.

Le nom Wi-Fi (contraction de Wireless Fidelity) l'organisme chargé de maintenir l'interopérabilité entre les matériels répondant à la norme 802.11.

I.1.2 Distance parcourue

Figure 53 distance d'un réseau wifi

II. Réseau Ethernet

II.1. Norme d'Ethernet

Inventé par Xérox dans les années 70 puis normalisé en 83. Norme IEEE 802.3

Topologie physique : Bus, mais aussi étoile.

Débit : 10 Mbps théorique, mais plus faible dans la pratique à cause des collisions.

Codage : 10 MHz, Manchester Différentiel. Évolution vers les hauts débits avec fast ethernet et gigabit ethernet
II.2. Protocole de communication

Chaque machine qui veut émettre attend jusqu'à ce qu'il n'y ait plus d'émissions sur le bus. Elle peut alors émettre : le message arrive à toutes les machines via le bus. Si une autre machine émet en même temps : collision des deux messages. La première qui s'en aperçoit émet un grondement de protestation pour en informer les autres. Les 2 protagonistes attendent un temps aléatoire avant de réémettre. Puisque l'émetteur doit se rendre compte de la collision il faut une longueur minimum de trame égale à 2 fois le nombre de bits transmis pendant le temps de propagation sur le plus grand réseau ethernet (2500 m), soit 64 octets.

II.3. Format des adresses :
les 3 premiers octets pour le n° de vendeur de l'interface sauf les 2 premiers bits :
le premier bit : individuelle (0) ou d'un groupe de stations (1)
le deuxième bit : globale (0) ou locale (1)
les 3 autres bits : n° de l'interface attribuée par le vendeur, sauf FFFFFF, de diffusion globale.
Les adresses sont donc uniques.
La taille des données si norme IEEE 802.3
Type de protocole transporté si Ethernet II (le plus répandu) : ex : 0800 pour IP. matériel

Dénomination IEEE pour de la paire torsadée, du câble coaxial ou de la fibre optique :

Débit : en Mbps
Type de transmission : modulation large bande ou bande de base
Type de câble : F pour Fiber ou T4 pour 4 paires torsadées
Longueur max : longueur maximale en centaine de mètre entre 2 éléments actifs sur un câble coaxial.

II.4. Connecteurs :

RJ45, BNC, ST...

Hub: appareil actif permettant de raccorder plusieurs machines en étoile. Simule un bus en répétant sur chaque port ce qui a été émis par une machine.

Switch: comme un hub mais le Switch ne répète la trame émise que sur les ports concernés. Plusieurs machines peuvent parler en même temps. Apprend la topologie du réseau ;
Full duplex permettant d'éviter les boucles dans le réseau en cas de maillage de plusieurs hubs.
Conclusion

Ce manuscrit est un support de cours pour les enseignants d'électronique et pour les techniciens de télécommunication. Dans les premières pages, on a présenté les différents types de réseaux télécommunication, d'autre part on a expliqué quelques systèmes de communication filaire comme la téléphonie et d'autres par ondes hertzienne comme la communication spatiale et les réseaux locaux. Dans ce cours on a évité d'entrer dans un calcul fatiguant par contre, on a détaillé les explications des phénomènes physiques et techniques.
EXERCICES

EXERCICE N°1
Remarque : Les questions peuvent avoir plusieurs réponses

1. Un réseau de télécommunications est composé:
 - De commutateurs
 - D’organismes de normalisation
 - D’artères de transmission
 - De terminaux
 - D’opérateurs de télécommunications

2. La topologie entièrement maillée 2 à 2 permet de raccorder entre eux:
 - un grand nombre d’équipements
 - un petit nombre d’équipements
 - se trouve dans la partie « cœur » de réseau
 - se trouve dans la partie périphérique du réseau

3. La topologie ou architecture de la boucle locale est basée sur:
 - une architecture en bus
 - une architecture en anneau
 - une architecture en étoile
 - une architecture maillée

EXERCICE N°2

1-Compléter la figure précédente en indiquant les Types du réseau utilisés dans la communication
2-Compléter le tableau suivant:

<table>
<thead>
<tr>
<th>Distance d'utilisation</th>
<th>Type du réseau</th>
<th>Exemple d'application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jusqu'à 0.5 m</td>
<td>BUS</td>
<td>Communication embarquée</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXERCICE N°3

nous voulons transmettre le numéro "0442515308" en utilisant les réseaux français caractérisé par:

1) Déterminer le temps nécessaire pour transmettre le numéro par Numérotation décimale ou par impulsions utilisé par les téléphones à cadran rotatif (poste à disque) sachant qu'un intervalle de temps de 200 ms doit séparer 2 trains d'impulsions

2) Déterminer les fréquences transmises successivement lorsqu'on utilise la Numérotation par fréquences vocales ou DTMF.
EXERCICE N°4
Sachant que X et la direction de propagation d'une onde électromagnétique et λ la longueur d'onde,

1-Tracer la propagation des champs magnétique et électrique de l'onde électromagnétique.
2-Définir la polarisation d'une onde électromagnétique.
3-Quels sont les différents types de polarisation d'une onde électromagnétique.

EXERCICE N°5
Une antenne est un composant passif, elle ne peut donc pas amplifier le signal. Mais par une disposition particulière des brins rayonnants, elle peut concentrer la puissance P_0 émise dans une direction privilégiée, une antenne directive a un gain G positif par rapport à une antenne isotope dans la direction privilégiée, ce gain G est mesuré par rapport à l’antenne isotope et exprimé en dBi. La directivité est caractérisée par l’angle d’ouverture à -3dB

Soit un émetteur de puissance $P_0 = 10\text{ W}$ et de fréquence 2000 MHz produit une onde électromagnétique par une antenne isotope (qui n’existe pas dans la réalité). L’onde électromagnétique se propage sans aucun obstacle.

1-Représenter la propagation de l’onde électromagnétique lorsque la polarisation est verticale
2-Déterminer la longueur d’onde.
3. Pour une distance de 1000m, déterminer:
 a) La densité de puissance mesurée
 b) Le champ électrique mesuré
 c) Le champ magnétique mesuré
L’onde électromagnétique est transmise par une antenne directive de type yagi
il existe une loi empirique pour estimer le gain de l'antenne en fonction de sa directivité :

\[G = 10 \cdot \log \left(\frac{41000}{\theta_a \cdot \theta_e} \right) \]

\(G \) = gain estimé de l'antenne en dBi
\(\theta_a \) = angle d'ouverture -3 dB de l'antenne en azimut (en degrés)
\(\theta_e \) = angle d'ouverture -3 dB de l'antenne en élévation (en degrés)

La figure suivante représente le diagramme de rayonnement dans les plans horizontal et vertical de l'antenne Yagi 9 éléments.

figure 1 diagramme de rayonnement en azimut et en élévation

4-Déterminer le Gain de l'antenne par rapport à l'antenne isotrope en dBi
5-On place une antenne réceptrice de même caractéristique à une distance de 5Km
5-a) En appliquant le théorème de Friis déterminer la puissance reçue (Pr) par l'antenne.
5-b) Déterminer le champ électrique au niveau du récepteur
5-c) Déterminer la tension (Vr) au niveau d'antenne si la résistance est de 50Ω
On donne la formule de Friis

\[P = G_1 G_2 P_0 \left(\frac{\lambda}{4\pi d} \right)^2 \]

avec :
- \(P_0 \) et \(P \), en Watts
- \(d \) et \(\lambda \), en mètres
- \(G_1 \) et \(G_2 \) sans unité (amplification en puissance)

On montre que le champ électrique \(E \) au niveau du récepteur s'écrit :

\[E = \sqrt{120\pi P} \quad \text{en} \quad V/m \]

\(P(\text{dBi}) = 10 \log P(\text{W}) \) et \(P(\text{dBm}) = 10 \log (P(\text{mw})) \)

EXERCICE N°6
Dans le GSM, la voix est digitalisée et traitée sous forme numérique avant la transmission la figure suivante représente la constitution du circuit émetteur.

1- Définir et expliquer les différents blocs du circuit émetteur.
Le signal est échantillonné à 8 KHz et codé en binaire en 13 bits.
2- Déterminer la vitesse de transmission en bits/s.

Le circuit récepteur est représenté par la figure suivante:
3-Définir et expliquer les différents blocs qui constituent le récepteur.

EXERCICE N°7

Le module de la transmittance d’un filtre gaussien numérique utilisé pour filtrer un signal binaire s’écrit :

\[
H(f) = \exp\left[-0,3466\left(\frac{f}{BTD}\right)^2\right]
\]

D représente le débit des données binaire

BT représente le produit (bande passante x durée du bit)

pour le GSM : BT = 0,3 et D = 270,8333 kHz

pour Bluetooth : BT = 0,5

Ce filtre s’appelle filtre gaussien car sa réponse impulsionnelle est une gaussienne. Il a été retenu pour le GSM parce qu’il ne déforme pas trop le signal binaire, minimise l’encombrement spectral de la porteuse modulée et se comporte bien vis-à-vis du bruit.

Les courbes suivantes représentent les courbes de gain d’un filtre gaussien pour 2 valeurs de BT utilisées en pratique.

1-Pour le GSM, mesurer graphiquement la fréquence de coupure \(f_c \) du filtre.
2- Calculer la durée d’un bit.
3- Déduire la bande passante B du filtre à partir de la valeur de BT.
Bibliographie

[1] jean-philippe muller et antennes BS2EL - Physique appliquée 2009

[2]: Cédric DEMOULIN, principes de base du fonctionnement du réseau GSM Département d'Électricité, Électronique et Informatique (Institut Montefiore) 2004

[4] TONYE.E, EWOUSSOUA.L, planification et ingénierie des réseaux de télécoms, université de yaounde (CAMEROUN) 2010

[6] Philippe LEFEBVRE, Réseaux et systèmes embarqués, ecole national de recherche de CAEN

[7] F. Ndagijimana, Antennes et Rayonnement, Université Joseph Fourier , Grenoble